DOACs in LVT: To Be or Not To Be

Jessica Hall, PharmD PGY-1 Pharmacy Resident SSM Health Saint Louis University Hospital December 15, 2022

Learning Objectives:

- 1. Identify risk factors for the development of left ventricular thrombus
- 2. Summarize guideline recommendations for the treatment of left ventricular thrombus including the agent and duration of treatment
- 3. Select an appropriate treatment regimen for left ventricular thrombus taking into consideration patient specific factors

Background¹:

Left ventricular thrombus (LVT): a blood clot in the left ventricle of the heart Incidence by cause:

- Anterior myocardial infarction (MI): 25%
- ST-segment elevation myocardial infarction (STEMI): 15%
- Non-ischemic cardiomyopathies: 2 36%

Pathophysiology of LVT after MI¹:

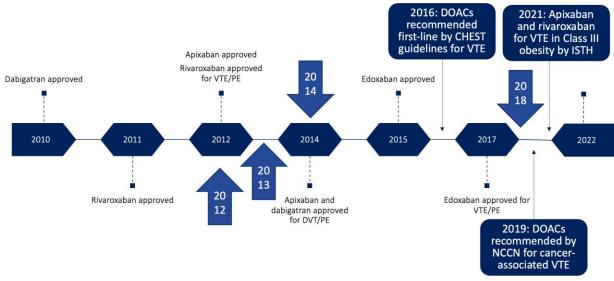
Virchow's Triad: blood stasis, endomyocardial injury, and hypercoagulability

- <u>Blood stasis</u>: Reduced contraction, wall motion abnormalities, diastolic dysfunction
- Endomyocardial injury: STEMI, poor reperfusion, extended period of ischemia
- <u>Hypercoagulability</u>: increased inflammation post MI, thrombocytosis, and leukocytosis **Risk Factors**^{1,2}:
 - Lower left ventricular ejection fraction
 - Severe diastolic dysfunction
 - Large infarct size
 - LV akinesia or dyskinesia
 - LV apex involvement
 - Anterior MI

Diagnosis¹:

- Transthoracic echocardiogram (TTE) is routinely performed
 - Low sensitivity for LVT
- Transesophageal echocardiogram (TEE) can be performed
- Cardiac magnetic resonance with contrast
 - o Gold standard
 - o Not frequently used due to cost and availability

Clinical importance^{1,3}:


- LVT increases a patient's risk of having a stroke or systemic embolism
- This puts the patient at risk of higher morbidity and mortality
 - \circ $\;$ Risk of embolic event is ~10% $\;$
- The risk of LVT formation is highest in the first 2 weeks after MI and the risk of stroke or systemic embolism is highest within 3 to 4 months after MI

Guideline Recommendations³⁻⁶:

Guideline Recommendations		
Guidelines	Recommendations	
American College of	Anterior MI and LVT or high risk for LVT:	
Chest Physicians	 Treatment with VKA for 3 months; goal INR of 2.0 - 3.0 (Grade 1B) 	
CHEST (2012)	DOACs: no mention of their use	
American College of	STEMI and asymptomatic LVT:	
Cardiology	• Treatment with VKA for 3 months; goal INR of 2.0 - 3.0 (Class IIa, Level of evidence C)	
ACCF/AHA (2013)	STEMI and receiving DAPT:	
	• Treatment with VKA for 3 months; goal INR of 2.0 - 2.5 (Class IIa, Level of evidence C)	
	DOACs: no recommendation made	
American Heart	Ischemic stroke or TIA and acute MI complicated by LVT:	
Association/American	• Treatment with VKA for 3 months; goal INR of 2.0 - 3.0 (Class I, Level of evidence C)	
Stroke Association	Ischemic stroke or TIA and acute MI with LVT and other risk factors:	
AHA/ASA (2014)	• Either formation of LVT or anterior or apical wall-motion abnormalities with LV	
	ejection fraction <40% and <u>intolerance to VKA</u> :	
	 LMWH, dabigatran, rivaroxaban, or apixaban for 3 months (Class IIb; Level of evidence C) 	
European Society of	STEMI and LVT:	
Cardiology	• Treatment with oral anticoagulant for up to 6 months (Class IIa; Level of evidence C)	
ESC (2018)	 Duration of treatment should be guided by repeat imaging 	
	 If VKA is used, target lower part of regular goal INR 	
	Non-VKA: use the lowest effective dose for stroke prevention	

Warfarin vs DOAC Considerations^{7,8}:

	Warfarin	DOAC
Advantages	Affordable	Proven safe and effective
	 Once daily dosing 	Rapid onset/offset of action
	No renal dose	No routine monitoring
	consideration	
Disadvantages	 Drug-drug interactions 	 Drug-drug interactions
	 Drug-food interactions 	 Twice daily dosing
	Frequent lab monitoring	Renal dose adjustment
	Bridging requirements	considerations
	Variable dosing	Can be expensive

Chest⁹, NCCN¹⁰, ISTH¹¹

Clinical question: Are DOACs safe and effective for the treatment of left ventricular thrombus?

Literature Review:

Fleddermann AM, Hayes CH, Magalski A, Main ML. Efficacy of Direct Acting Oral Anticoagulants in Treatment of Left Ventricular Thrombus. <i>Am J Cardiol</i> . 2019;124(3):367- 372. ¹²			
Design	Intervention	Results	Conclusion
Single-center retrospective study	52 patients treated with a DOAC for LV thrombus Apixaban (n = 26, 50%) Rivaroxaban (n = 24, 46%) Dabigatran (n = 2, 4%)	 The primary end point resolution of LV thrombus or death, major bleeding, ischemic stroke, or peripheral embolization 83% of patients had resolution of thrombus Average time to resolution of thrombus was 264 days 1 cardioembolic event (TIA) 8% of patients had major bleeding requiring transfusion 	 Findings are consistent with and add to earlier publications DOAC therapy appears promising for the treatment of LV thrombus Larger, prospective trials are needed to confirm these results

Drug	Dosing Regimen	Percent of patients on this regimen
Apixaban	2.5 mg BID	15.4
	5 mg BID	84.6
Rivaroxaban	15 mg daily	20.8
	20 mg daily	79.2
Dabigatran	150 mg BID	100

Analysis:

Strengths		Limitations	
•	Expert ECHO reviewer to verify resolution Reported dosing regimens Doubled the amount of patient data available		
•	Similar results to previous literature		

Robinson AA, Trankle CR, Eubanks G, et al. Off-label Use of Direct Oral Anticoagulants Compared With Warfarin for Left Ventricular Thrombi. *JAMA Cardiol*. 2020;5(6):685-692.¹³

Design

• Multicenter, retrospective cohort study

Purpose

• To compare the outcomes associated with the use of DOACs and warfarin for the treatment of LVT

Interventions

- Warfarin (n = 300)
- DOAC (n = 185)
 - Apixaban N = 141 (76.2%)
 - Rivaroxaban N = 46 (24.9%)
 - Dabigatran N = 9 (4.9%)

Inclusion Criteria

- LVT diagnosed by ECHO
- October 1, 2013 to March 31, 2019

Primary Outcome

• Clinically apparent stroke or systemic embolism (SSE)

Study Population:

- Warfarin = 300
- DOACs = 185
- Therapy-change = 64
 - \circ $\,$ DOAC to warfarin (19 patients): switched due to cost
 - o Warfarin to DOAC (52 patients): switched due to convenience of DOACs
 - Some patients switched between groups more than one time confounding the total number of patients included in each arm
- Some patients did not receive a DOAC or warfarin
 - o 50 patients with only parenteral agent and 43 patients with no anticoagulation

Outcomes:

Anticoagulant	SSE	Death	Bleeding Event
DOAC	17	14	8
Warfarin	14	32	19
Parenteral Agent	11	12	4
None	12	57	N/A
Total	54	115	31

Univariable Cox proportional hazards regression analysis		
Risk of SSE: (DOAC vs	(HR, 2.71; 95% Cl, 1.31 - 5.57; P = 0.01)	Significantly higher risk with
Warfarin)		DOACs vs warfarin
Risk of SSE: (Prior SSE)	(HR, 2.13; 95% Cl, 1.22 - 3.72; P = 0.01)	Significantly higher risk with
		prior SSE event

BMI, eGFR, race/ethnicity, LV ejection fraction, and thrombus size were not significantly associated with SSE events.

Author's conclusions

 DOAC treatment and prior SSE events were associated with increased risk of SSE events even after adjustment for other factors. These findings argue against the assumption of equivalence of DOACs and warfarin for LVT. Off-label use of DOACs for LVT should be used with caution.

Analysis

Strengths	Limitations	
Largest study to date	Retrospective nature	
Standardized expert assessment of	Possibility for unmeasured confounders	
thrombi on ECHO	No data about dosing	
	No adherence data or information about	
	time in INR goal	

Chen Y, Zhu M, Wang K, Xu Q, Ma J. Direct Oral Anticoagulants Versus Vitamin K Antagonists for the Treatment of Left Ventricular Thrombus: An Updated Meta-Analysis of Cohort Studies and Randomized Controlled Trials. *J Cardiovasc Pharmacol*. 2022;79(6):935-940.¹⁴

Design

• Meta-analysis, including 12 cohort studies and 3 randomized controlled trials **Purpose**

• To compare the safety and efficacy of DOACs and VKAs in patients with LVT Interventions

- Warfarin (n = 1705)
- DOAC (n = 629)
 - o Apixaban, 40.4%
 - o Rivaroxaban, 50.3%
 - o Dabigatran, 8.8%
 - o Edoxaban, 0.4%

Inclusion Criteria

- Cohort studies and RCTs
- Adults with LVT evaluated by TTE or cardiac magnetic resonance
- Comparison between DOACs and VKAs
- Evaluation of safety and efficacy

Data Collected

- Patient characteristics
- Publication year
- Study design and period
- Sample size

Individual Study Outcomes

- Thrombus resolution
 - Stroke, systemic embolism
 - Major bleeding
 - All-cause mortality

Primary Outcomes

- Thrombotic events
- Thrombus resolution

Safety Outcomes

- Clinically significant bleeding
- All-cause mortality

Statistical Analysis

- Relative risk for each study with 95% confidence interval
- Statistical heterogeneity: /2 > 50%
 - Significant heterogeneity: random effects model
- Sensitivity analyses were conducted

Study Population

- 15 studies included (12 cohorts and 3 RCTs)
- 2334 patients included

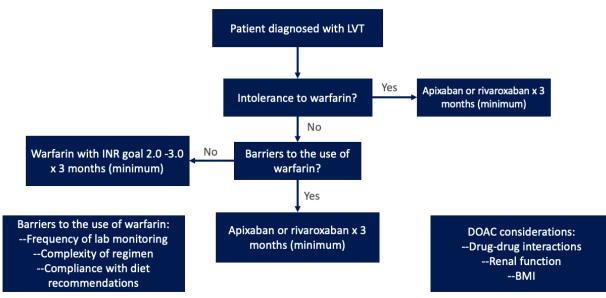
DOAC Dosing in RCTs

Alcalai et al	Apixaban 5 mg BID	Apixaban 2.5 mg BID ^T		
T: two or more of the following criteria: age \geq 80 years, weight \leq 60 kg, or SCr \geq 1.5 mg/dL or				
patients with advanced renal fa	patients with advanced renal failure (CrCl 15 - 29 mL/min)			
Haniff et al	Apixaban 5 mg BID	Apixaban 2.5 mg BID [*]		
*: two or more of the following criteria: age ≥75 years, weight ≤60 kg, or SCr ≥1.5 mg/dL				
Abdelnabi et al Rivaroxaban 20 mg daily				
Outcomes				
End Point	Risk Ratio and P-value			
Resolution of LVT	olution of LVT RR = 1.01 (0.93 to 1.09) P = 0.48, $l^2 = 0\%$			
SSE Pooled RR = 0.87 (0.11 t		5) P = 0.2, <i>I</i> ² = 67.2%		
Clinically significant bleeding RR = 0.6 (39 to 0.9) P = 0.01, $l^2 = 0\%$		$I_{J} I^{2} = 0\%$		
All-cause mortality	-cause mortality RR = 0.9 (0.58 – 1.4) P = 0.65, $l^2 = 0\%$			

- Agent used
- Follow-up
- Outcomes

Author's Conclusions

DOACs are noninferior to warfarin for the treatment of LVT, however, they have a lower risk of clinically significant bleeding. This suggests that DOACs might be better alternatives to warfarin for LVT treatment


Analysis

Strengths	Limitations	
 Largest study to date Comprehensive of all current data including 3 RCTs TTE as diagnostic tool increases generalizability 	 Retrospective nature of most studies included Small sample size in RCTs Not all studies reported bleeding events No information about dosing No adherence data or information about time in INR goal Stated non-inferiority, but did not perform any statistical tests 	

Main Takeaways:

- Use of DOACs in the treatment of LVT may have similar efficacy to warfarin
- Bleeding risks associated with DOACs as compared to warfarin may be more favorable
- In patients with intolerability to warfarin or barriers to the use of warfarin, DOACs may be a reasonable alternative

Proposed Treatment Algorithm

Remaining Questions

- What dosing regimen should be used?
- Is one agent preferred over another?

References:

- 1. Cruz Rodriguez JB, Okajima K, Greenberg BH. Management of left ventricular thrombus: a narrative review. *Ann Transl Med*. 2021;9(6):520.
- 2. Camaj A, Fuster V, Giustino G, et al. Left Ventricular Thrombus Following Acute Myocardial Infarction: JACC State-of-the-Art Review. *J Am Coll Cardiol*. 2022;79(10):1010-1022.
- 3. Vandvik PO, Lincoff AM, Gore JM, et al. Primary and secondary prevention of cardiovascular disease: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. *Chest*. 2012;141:e6375–e668S.
- O'Gara PT, Kushner FG, Ascheim DD, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;61:e78–e140.
- 5. Kernan WN, Ovbiagele B, Black HR, et al. Guidelines for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. *Stroke*. 2014;45:2160–2236.
- 6. Ibanez B, James S, Agewall S, et al. 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the task force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). *Eur Heart J*. 2018;39:119–177.
- 7. Bauer KA. Pros and cons of new oral anticoagulants. *Hematology Am Soc Hematol Educ Program*. 2013;2013:464-470.
- 8. Chen A, Stecker E, A Warden B. Direct Oral Anticoagulant Use: A Practical Guide to Common Clinical Challenges. *J Am Heart Assoc.* 2020;9(13):e017559.
- 9. Kearon C, Akl EA, Omelas J, et al. Antithrombotic Therapy for VTE Disease: CHEST Guideline and Expert Panel Report. *Chest*. 2016;149:315-352.
- 10. National Comprehensive Cancer Network. Cancer-Associated Venous Thromboembolic Disease (Version 1.2019). URL. Accessed November 14, 2022.
- 11. Martin KA, Beyer-Westendorf J, Davidson BL, Huisman MV, Sandset PM, Moll S. Use of direct oral anticoagulants in patients with obesity for treatment and prevention of venous thromboembolism: Updated communication from the ISTH SSC Subcommittee on Control of Anticoagulation. *J Thromb Haemost*. 2021;19(8):1874-1882.
- Fleddermann AM, Hayes CH, Magalski A, Main ML. Efficacy of Direct Acting Oral Anticoagulants in Treatment of Left Ventricular Thrombus. *Am J Cardiol*. 2019;124(3):367-372.
- 13. Robinson AA, Trankle CR, Eubanks G, et al. Off-label Use of Direct Oral Anticoagulants Compared With Warfarin for Left Ventricular Thrombi. *JAMA Cardiol*. 2020;5(6):685-692.
- 14. Chen Y, Zhu M, Wang K, Xu Q, Ma J. Direct Oral Anticoagulants Versus Vitamin K Antagonists for the Treatment of Left Ventricular Thrombus: An Updated Meta-Analysis of Cohort Studies and Randomized Controlled Trials. *J Cardiovasc Pharmacol*. 2022;79(6):935-940.